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ABSTRACT

The Atlantic meridional overturning circulation (AMOC) is of great importance in Earth’s climate system, and

reconstructing its structure and variability by combining observations with a coupled model is a key step in un-

derstanding historical and future states of AMOC. However, models always have systematic errors called bias

owing to imperfect numerical representation of the real world. Model bias and the sparse nature of ocean ob-

servations, particularly in deep oceans, make it difficult to generate a complete historical picture of AMOC

structure and variability. Here, two coupled models that are biased with respect to each other are used to design

‘‘twin’’ experiments to systematically study the influence of model bias on AMOC reconstruction. One model is

used to produce the ‘‘observations’’ that sample the ‘‘true’’ solution of the AMOC to be reconstructed, while the

othermodel is used to incorporate the ‘‘observations’’ to reconstruct the ‘‘truth’’ through coupled data assimilation

(CDA). The degree to which the ‘‘truth’’ is recovered by aCDA scheme assesses the critical role of coherent (both

upper- and deep-ocean incorporate enough observations to mitigate stratification instability) ocean stratification

onAMOC reconstruction. Results show that balancing restoration of climatology and assimilation of observations

is vital to better reconstructAMOCstructure and variability, given thatmost ocean observations are only available

in the upper 2000m. The gained results serve as a guideline in ocean-state estimation with a balance of deep

restoring and upper data constraint for climate prediction initialization, especially for decadal predictions.

1. Introduction

TheAtlanticmeridional overturning circulation (AMOC)

with the northward (southward return) flow in the upper

(deep)Atlantic is a significant part of Earth’s climate system

(Delworth et al. 2008). In the Atlantic, the AMOC trans-

ports more than 1 PW of heat from south of the equator to

high latitudes (Johns et at. 2011; Macdonald and Baringer

2013), attributable to the slightly warmerNorthHemisphere

than the Southern Hemisphere, as well as to the mean po-

sition of the intertropical convergence zone being north of

the equator (e.g., Frierson et al. 2013; Marshall et al. 2014;

Buckley and Marshall 2016).

Given the short period of direct observations, our

understanding of AMOC largely comes from model

studies. Karspeck et al. (2015) compared the behavior of

the AMOC in various ocean and coupled reanalysis

products, and found that there are significant differ-

ences in both AMOC structure and variability among

the products, despite their use of similar observational

constraints. For example, although theAMOC structure

in theGeophysical FluidDynamics Laboratory (GFDL)

coupled model (Fig. 1a) has a somewhat similar pattern

as in the ECMWFORAS4 (Fig. 1c), themean transports

are stronger in ORAS4 and variability of the two anal-

ysis products is quite different (Figs. 1b,d). Large vari-

ability in theGFDLmodel (Fig. 1b) occuring in the deep

ocean at the equatorial area may be associated with theCorresponding author: Shaoqing Zhang, szhang@ouc.edu.cn
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climatological restoring (Karspeck et al. 2015). Also, the

lower cell is weak in ORAS4 and the ensemble coupled

data assimilation (ECDA) system shows a strong deep

equatorial counterclockwise circulation. Although the

recent analysis of more ocean/coupled reanalysis prod-

ucts by Jackson et al. (2019) showed more agreement on

overall AMOC characteristics, especially the weakening

trend in the historical simulation, distinct differences in

structure (see Fig. 2 of Jackson et al. 2019) and vari-

ability (see Fig. 11 of Jackson et al. 2019) exist. These

differences in AMOC structure and variability in dif-

ferent models and reanalysis products, for which the

inherent model bias plays an important role (Dee and da

Silva 1998; Dee 2004, 2005), lead to large uncertainties

in representation and understanding of the AMOC.

The general adverse impact of model bias on data

assimilation has been widely studied (e.g., Dee and da

Silva 1998; Balmaseda et al. 2007; Dee 2005; Zhang and

Rosati 2010; Zhang et al. 2014). The model bias gener-

ally refers to the systematic difference (or called error)

between model simulations and observations, resulting

from the misfitting of model dynamical core and physi-

cal processes (e.g., Zhang et al. 2012). Although the

model bias could consist of errors in mean state and

variability spectral structure, it is the mean-state error,

which is a major obstacle to data assimilation, that is

generating artifacts in analyzed variability (e.g., Dee

and da Silva 1998; Dee 2004, 2005). Direct statistical

correction has been applied to ocean data assimilation

(ODA) to address the adverse impact of ocean model

FIG. 1. Reconstructed AMOC (left) mean states and (right) standard deviation of the annual-mean, linearly

detrended streamfunction in (a),(b) GFDL ECDA and (c),(d) ECMWF ORAS4 products. Bold line is the zero

contour for mean states and 0.5-Sv contour for standard deviation. Contour interval is 2 Sv for mean states and

0.25 Sv for standard deviation. From Karspek et al. (2015).
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bias on ocean-state analysis (e.g., Chepurin et al. 2005;

Balmaseda et al. 2007). Zhang and Rosati (2010) designed

an adaptively inflated scheme to relax the influence of

coupledmodel bias on deep-ocean-state estimationwithin a

‘‘twin’’ experiment framework using two coupled models

with an identical ocean model component. This study tends

to use two independent coupled models to thoroughly ex-

amine the adversely impact of coupled model bias (mean-

state error) on AMOC reconstruction, in which both the

atmosphere andoceanmodels in the assimilationmodel and

observational model are entirely different.

As the AMOC is a product of atmosphere–ocean

coupling, and observations are sparse in both space and

time (particularly sparse in the deep ocean due to

measuring difficulties), model bias makes it especially

challenging to reconstruct AMOC structure and vari-

ability by combining coupled models with observations

in maintaining the coupling mechanism. For example,

the sparse and discontinuous nature of observations

means that the bias of a givenmodel is not a well-defined

quantity. In addition, the AMOC is an integration of the

wind-driven circulation and three-dimensional oceanic

thermohaline structures, for which the long-term mean

structure and variability are not directly observable.

These factorsmake it difficult to evaluate the quality of a

reconstructedAMOC. For example, it would be difficult

to argue which one is better in Fig. 1.

Understanding the influence of model bias on AMOC

reconstruction within an idealized framework using the

sea surface temperature (SST) and Argo ocean observ-

ing network is a key step toward accurately recon-

structing the structure and variability of AMOC. In this

study, we design a twin experiment framework with two

coupled models that are biased with respect to each

other. Although these two models also have a differ-

ent representation of variability, we particularly use the

framework to address the issue of model bias. In such a

framework, one coupled model is used to represent the

‘‘true’’ solution of the coupled data assimilation (CDA)

problem, from which the ‘‘observations’’ [sampling the

model simulation results onto the in situ data network,

the SST, and Argo profiles, in this case; described in

section 2b(2)] are sampled. The other coupled model is

used to conduct CDA for incorporating the ‘‘observa-

tions’’ into the model to recover the ‘‘truth.’’ The resulting

AMOC structure and variability represents a reconstruc-

tion by combining a biased coupled model with ‘‘obser-

vations.’’ The degree to which the AMOC structure and

variability of the ‘‘truth’’ is recovered with a bias-counted

CDA scheme is an assessment of the influence of model

bias on AMOC reconstruction. Our focus is on the influ-

ence of biased ocean stratification on the reconstructed

mean structure and variability of AMOC.

The remainder of this paper is organized as follows.

Section 2 presents methodology, including brief descrip-

tions for the two coupled models, NCAR CESM1.3 and

GFDL CM2.1, and the CM2.1-ECDA system. Section 3

presents the problems associated with the reconstructed

AMOC using the traditional CDA scheme if the ocean

model bias is not appropriately handled. Section 4 pres-

ents the results of various CDA schemes that use global

restoring to the climatology derived from the ‘‘truth’’

model to enhance stability of the ocean stratification.

Finally, an optimal CDA scheme among three with ap-

propriate climatological restoring and instantaneous data

constraints for best retrieving the AMOC structure and

variability is discussed and analyzed. Discussions and

conclusions are given in section 5.

2. Methodology

a. Coupled models and coupled data assimilation

We use the Community Earth SystemModel version 1.3

(CESM1.3)—an updated version from Hurrell et al.

(2013)—developed at theNational Center forAtmospheric

Research (NCAR) as the ‘‘truth’’ model to produce ‘‘ob-

servations,’’ and the GFDL second-generation coupled

model (CM2.1) (Delworth et al. 2006; Gnanadesikan

et al. 2006) as the target model that assimilates the ‘‘ob-

servations’’ to recover the ‘‘truth’’ by a CDA approach.

The corresponding CDA method is the ensemble cou-

pled data assimilation system based on CM2.1 (CM2.1-

ECDA) (Zhang et al. 2007; Zhang and Rosati 2010).

1) NCAR CESM1.3

CESM1.3 is a fully coupled global Earth system model

that provides most advanced simulations of Earth’s climate

states for various time period.A similar version of themodel

was used in simulations participating in phase 5 of the

Coupled Model Intercomparison Project (CMIP5) (Taylor

et al. 2012). In this study, we conducted a historical (tran-

sient) simulation (so-called BHISTC5, a historical setting

of CAM5 starting from 1850 as the atmosphere model) in

which the components include the Parallel Ocean Program

version 2 (POP2) for ocean, the Community Atmosphere

Model version 5 (CAM5) for atmosphere, the Community

Land Model version 4.0 (CLM4.0) for land, and the

Community Ice Code (CICE) for sea ice. POP2 has an

approximately 18 3 18 horizontal (latitude–longitude)
resolution with meridional resolution on the order of

0.38 near the equator (the same as CICE) with 60 ver-

tical layers, while CAM5 has a horizontal resolution of

1.98 3 2.58 (the same as CLM4.0) with 32 vertical levels.

As described above, CESM1.3 is used in this work to

define the ‘‘true’’ solution for climate reconstruction in the

twin experiment framework, providing the ‘‘observations.’’
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2) GFDL CM2.1

By combining the atmosphere model 2.1 and land model

2.1 (AM2.1–LM2.1) with version 4 of the Modular Ocean

Model (MOM4) and the Sea Ice Simulator (SIS), theGFDL

of the National Oceanic and Atmospheric Administration

(NOAA) has developed the second generation of the fully

coupled general circulation Climate Model, version 2.1

(CM2.1), for use of its simulations in the Intergovernmental

Panel on Climate Change (IPCC) Fourth Assessment

Report (AR4) (Randall et al. 2007).Theatmosphericmodel

AM2.1 is based on a finite-volume dynamical core (Lin

2004), has a horizontal resolution of 2.08 3 2.58 (the same as

LM2.1), and 24 vertical levels. MOM4 has 50 vertical levels

(10-m thickness per layer for top 22 levels) and 18 3 18
horizontal resolution refining to 1/38 near the equator in the
meridional. GFDL CM2.1 is also run in the historical

configuration.

3) COUPLED DATA ASSIMILATION SYSTEM:
CM2.1-ECDA

The bias-counted data assimilation scheme of this

study, which directly addresses the model bias issue,

starts from the ensemble coupled data assimilation sys-

tem (CM2.1-ECDA) using the ensemble adjustment

Kalman filter (EAKF) (Anderson 2001, 2003) with an

inflated coupled ensemble filtering scheme (Zhang and

Rosati 2010). The inflated ECDA system enhances

the subsurface observational constraint through inflat-

ing the ensemble spread in the filtering regression, thus

relaxing influences of ocean model bias on ODA to

some degree. Detailed information on CM2.1-ECDA is

available in Zhang et al. (2007, 2010). Here, we only

comment on relevant aspects to this study. As in these

referenced previous studies, the CDA used here is a

weakly coupled data assimilation scheme (illustrated by

Fig. 2a), in which the oceanic (atmospheric) observa-

tions only directly adjust the ocean (atmosphere) com-

ponent of the coupled model while the exchange fluxes

of coupled model can transfer the observational infor-

mation between the model components.

The adaptively inflated ensembleKalman filter (Zhang

and Rosati 2010) is implemented using a two-step local

least squares filtering (Anderson 2003). With a Gaussian

approximation for the model background uncertainties,

the first step calculates the observational increment

through convolution of two Gaussians (as shown in the

right part of Fig. 2b). After a few standard manipula-

tions (e.g., Zhang et al. 2007) illustrated by the steps 1

and 2 in Fig. 2b (encircled numbers), the observational

increment for the ith ensemble member produced by

the kth observation Dyoi,k is calculated as

FIG. 2. Cartoon of how (a) the observations in components of an atmosphere (land) and ocean (sea ice) coupled

model impactmodel variables (denoted by the thick red arrows) andmodel components interact with each other by

exchanging fluxes (red arrows), and (b) an ensemble filter updates the probability distribution for a scalar variable

given an observation. The dashed green arrow in (a) denotes the radiative forcings expressed by the atmospheric

greenhouse gas and natural aerosol (GHGNA) and means that the GHGNA radiative forcings in assimilation may

be set as a preindustrial fixed year or with historical records. The upper left of (b) represents the prior distribution

derived from model ensemble integrations starting from the previous assimilation results. The upper right of

(b) represents an observation available at the location denoted by the asterisk with a Gaussian distribution at the

lower right, which leads the ensemble spread adjustment (shown by①) and the ensemblemean shift (shown by②).

A filtering process, shown by ③ at the left of (b), combines the observational and prior distributions to form an

analyzed distribution [lower left of (b)] realized by a set of adjusted ensemblemembers, which are initial conditions

for the next ensemble integrations. Here ① 1 ② implements step 1 and ③ carries out step 2 of the two-step

adjustment described in section 2a(3).

7322 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/doi/pdf/10.1175/JC
LI-D

-19-0735.1 by guest on 06 August 2020



Dyoi,k 5
y
k

11 k2(y
k
, yok)

1
yok

11 k22(y
k
, yok)

1
y
i, k

2 y
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 k2(y
k
, yok)

p 2 y
i,k
,

(1)

where the first two and the third terms at the right-hand

side of the equation stand for the ensemble mean shift

(denoted by ② in Fig. 2b) and the ensemble spread ad-

justment (denoted by① in Fig. 2b), respectively. Also, yk
with an overbar denotes the mean of model ensemble

estimate for the observation yok at the observational lo-

cation k denoted as yi,k; k(yk, y
o
k) represents the ratio of

standard deviations of model ensemble spread and ob-

servational errors at location k (i.e., sk/s
o
k). Under the

assumption of perfect model, the increment in Eq. (1) is

only related to forecast error variances, not referring to

the systematic error of the model (bias).

The second step projects the observational increment

onto the model grids through a least squares fitting (re-

gression) using the ensemble statistics (as denoted by the

left part of Fig. 2b) with the addition of the deep-ocean

inflation scheme (Zhang andRosati 2010), which to some

extent addresses the ocean model bias. As in Zhang and

Rosati (2010), considering localization and deep-ocean

inflation, the regression of any oceanic variable at grid

point j for the ith ensemble member xi,j with the ob-

servation increment calculated by Eq. (1) can be ex-

pressed as

Dx
i, j
5V

j,k
r(x

j
, y

k
)D

i,k
(k, k

0
, Dyoi,k, Dy

o
i,k,0 ), (2)

where Di,k is a function of k, k0, Dy
o
i, k, and Dyoi,k,0 [see

Eq. (3) of Zhang and Rosati 2010], representing a

combination of adjusted increments (before weighted

by correlation and localization) computed by applying

the model ensemble statistics (producing k and Dyoi,k)
and historical data statistics (producing k0 and Dyoi,k,0 ).
The terms k and k0 are the ratios of the standard devi-

ations of model variables xj (being adjusted at grid point

j) and yk (being observed at location k), respectively,

as estimated by the model ensemble (for k) and adap-

tively updated ‘‘historical’’ data (for k0), representing

stationary and flow-dependent error statistics, while

Dyoi,k and Dyoi, k,0 are the resulting observational incre-

ments applying k and k0 to Eq. (1), respectively, and r is

the correlation coefficient between xj and yk. The termVj,k

is the covariance localization function (see Zhang et al.

2005), which is only determined by the distance between

locations j and k. For more details, please refer to Zhang

and Rosati (2010).

Combining the inflatedECDA system described above

with climatology restoring, this study designs a bias-counted

ODA scheme to directly address the model bias issue

of the entire ocean and examine its impact on theAMOC

reconstruction.

b. Experimental design

1) BIASED TWIN EXPERIMENTS

In this part, we introduce a biased twin experiment

framework in which CESM1.3 is the ‘‘observational’’

(TRUTH) model while CM2.1 is the assimilation

(biased) model. The ‘‘true’’ solution of the recon-

struction problem (denoted as TRUTH) is a priori

defined by a historical simulation of the CESM1.3

model from 1850 to 1999. The 20-yr period from 1978

to 1997 was set as the target for the reconstruction,

which produces the synthesis ‘‘observations.’’ As a

contrast, a free control (CTL) experiment without

any data constraint serving as a reference of assimi-

lation is first conducted using CM2.1 initialized from

the states of a historical simulation at 0000 UTC

1 January 1978 until 31 December 1997. Starting at

0000 UTC 1 January 1978, we run 11-day CTL to

obtain 12 daily departure atmosphere restarts com-

bined with the ocean initial condition of CTL as the

12-member initial conditions of the CM2.1-ECDA

system. Then we try to recover the ‘‘TRUTH’’ in this

1978–97 period with the assimilation of atmospheric

and/or oceanic data. To reconstruct AMOC using this

‘‘biased’’ CM2.1 (vs. CESM1.3) coupled model, we first

conducted a basic CDA experiment (called CDA0) to

examine the deficiencies of the reconstructed AMOC

mean state and variability. Further CDA experiments

were then designed to improve the result. All model

simulations and assimilation experiments are listed in

Table 1.

2) DATA

In the experiments, we use regridded CESM1.3 at-

mospheric wind and temperature data (converted to

the same grid as CM2.1 on all level), Argo data, and

gridded SST (both derived from CESM1.3 simulation).

The atmospheric ‘‘observations’’ from CESM1.3 take

the gridded reanalysis format of temperature and wind

superimposed by a random white noise with respective

standard deviations of 1K and 1ms21, and 6-h time

intervals. The ocean ‘‘observations’’ are produced by

sampling the ‘‘truth’’ (i.e., the 1978–97 model states of

the CESM1.3 historical run) ocean temperature and

salinity onto the 2007 Argo network repeatedly (as

shown in Fig. 3), as well as gridded daily SST data. The

ODA frequency is daily to assimilate Argo profiles and

SST data. A 4-day observational window is applied for

Argo profiles. Following the previous OSSE (Observing
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System Simulation Experiment) design (Zhang et al.

2007, 2010), the standard deviation of ocean observa-

tional errors is set as 0.58C for temperature and 0.1

PSU for salinity at the surface, decaying gradually

with a 2000-m e-folding depth to simulate the prop-

erty of observational representativeness errors. In

the Argo network, the number of salinity profiles is

almost equal to that for temperature; for example,

the sum of temperature (salinity) profiles is 16 255

(16 126) in January 2007.

3. Problems in reconstructing the AMOC using
traditional coupled data assimilation

First, we examine the different characteristics of

AMOCs produced by the ‘‘truth’’ model (CESM1.3)

FIG. 3. All Argo profiles in (a) January, (b) April, (c) July, and (d) November 2007.

TABLE 1. List of experiments.

Expt Model Initial condition Forcing Data constraint Period

TRUTH CESM1.3 Start from 1850 of BHISTC5 case BHISTC5 case 1850–2000

radiative forcings

Free run 1850–2000

CTL CM2.1 Historical simulation (member 1)

at 0000 UTC 1 Jan 1978

Historical radiative forcings Free run 1978–97

CDA0 CM2.1 As in CTL As in CTL Traditional CDA 1978–87

Restoring1 CM2.1 As in CTL As in CTL Restoring below 1000m 1978–80

CDA1 CM2.1 From Restoring1 at 0000 UTC

1 Jan 1981

As in CTL CDA 1 Restoring1 1981–87

Restoring2 CM2.1 As in CTL As in CTL Restoring below 0m 1978–80

CDA2 CM2.1 From Restoring2 at 0000 UTC

1 Jan 1981

As in CTL CDA 1 Restoring2 1981–97

Restoring3 CM2.1 As in CTL As in CTL Restoring below 0m but

different restoring coefficient

1978–80

CDA3 CM2.1 From Restoring3 at 0000 UTC

1 Jan 1981

As in CTL CDA 1 Restoring3 1981–97
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and the biased model (CM2.1). As in many previous

studies (e.g., Delworth et al. 1993, 2002; Keenlyside et al.

2008; Zhang et al. 2010; Yeager et al. 2014), an AMOC

streamfunction (in Sv; 1 Sv 5 106m3 s21) is defined as

the zonally integrated volume transport (see Karspeck

et al. 2015), expressed as

C(y, z)5

ðh
z

ðxeast
xwest

y(x, y, z0) dx dz0, (3)

where y is the meridional velocity, y is the latitude, z is

the depth, h is the height of ocean surface, and xeast and

xwest are the east and west boundaries of the Atlantic,

respectively. To facilitate the comparison between the

results of twomodels, we define the AMOC index as the

maximum value of theAMOC streamfunctionC(y, z) at

the fixed latitude of 408N (e.g., Mahajan et al. 2011) in-

stead of the maximum value between 208 and 708N (e.g.,

Delworth et al. 1993).

The AMOC time-mean streamfunctions from the

CESM1.3 and CM2.1 CTL historical simulations, as well

as time series of the corresponding monthly mean indi-

ces, are shown in Fig. 4. The broad structural features in

the AMOC mean states produced by both models have

some similarities. For example, the upper cell (above

;3500m) of AMOC includes northward surface flow

and southward return flow of the North Atlantic Deep

Water (NADW). The lower cell (below ;3500m) rep-

resents the flow of the dense Antarctic Bottom Water

(AABW). However, systematic differences between the

two models are evident. First, compared with the CM2.1

AMOC, the CESM1.3 AMOC is on the whole much

stronger, with a broader vertical extent of the NADW

cell and much larger transport values. While the maxi-

mum transport magnitudes of the NADW cell to the

south of 308N in the CESM1.3 AMOC are above 20 Sv,

the corresponding CM2.1 magnitude is 16–17 Sv.

Notably, the maximum streamfunction in the strong

overturning core between 308 and 508N is ;19Sv in

CM2.1 but up to 29 Sv in CESM1.3. The value 29Sv is

higher than the typical CESM AMOC index due to the

model spinup (the ocean model is initialized from

Levitus data with modifications in the Arctic Ocean;

Levitus et al. 1998; Steele et al. 2001; Danabasoglu et al.

2014), but such differences are not important for our

present purposes, since we do not know the magnitude

FIG. 4. The AMOC (a),(b) mean state based on the CESM and CM2.1 historical simulations, respectively, and

(c) monthly mean variability for the period of 1978–97.
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FIG. 5. The root-mean-square error (RMSE) with respect to CESM1.3 ‘‘truth’’ (a)–(d) above and

(e)–(h) below 2000m of (a),(b),(e),(f) the global ocean and (c),(d),(g),(h) the Atlantic Ocean (left)

temperature (8C) and (right) salinity (psu) in CTL (black line, CM2.1 free run), CDA0 (green line, with

CDA only), Restoring1 (dashed blue line, with T and S restoring below 1000m), CDA1 (solid blue line,

CDAwith Restoring1), Restoring2 (dashed purple line, with T and S restoring in all ocean layers), CDA2
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of the bias between numerical models and the real

world. In addition, the AMOC variabilities in CESM1.3

and CM2.1 are largely independent with a correlation

coefficient of only 0.25 between the monthly-mean time

series (further studies may be interesting to attribute the

correlation to a common seasonal cycle or external

forcing). These systematic differences in mean state and

variability must be associated with many features in the

AMOC system such as the different modeling capability

to simulate key strait overflows (e.g., Denmark Strait

and Faroe Bank Channel) (Danabasoglu et al. 2010).

a. Convergent upper-ocean temperature and salinity
in CDA0

The first reconstruction experiment is CDA0, in which

the CM2.1-ECDA system described in section 2a(3)

assimilates the ‘‘observations’’ of ocean temperature and

salinity, as well as atmospheric temperature and wind

produced by CESM1.3. The root-mean-square errors

(RMSEs) of ocean temperature and salinity above (below)

2000m are shown in Fig. 5 as green lines (Figs. 5a,b,e,f are

for the global ocean and Figs. 5c,d,g,h are for theAtlantic).

Figure 5 shows that the assimilation system works well,

with the observations successfully assimilated into the

coupled model. After the 3-yr assimilation spinup, the

assimilated ocean states over the upper 2000m con-

verge toward the ‘‘truth.’’

Since the state of AMOC could be influenced by the

atmospheric forcing in a coupled system, we use Fig. 6 to

confirm the atmosphere data assimilation (ADA) does

work to constrain the CM2 model to the data produced

by the CESM1.3 model. Figure 6 shows that through a

few days of ADA constraints, the RMSEs of CM2 at-

mosphere temperature andwind reduce greatly (by 70%

and 50%, respectively), and after about 10 days, the

ADA reaches the equilibrium. While the impact of at-

mospheric high-frequency constraints on the AMOC

analysis will be thoroughly examined in follow-up studies,

we will focus on the influence of ocean stratification in

ODA on the AMOC reconstruction in this study.

b. Misrepresentation of the AMOC mean state

We use the CDA0 results over years 4–10 to calculate

the AMOC mean state, seasonal cycle, and variability

(Fig. 7). Surprisingly, we find that, although the surface

forcing from the atmosphere and upper-2000-m ocean

temperature and salinity are constrained, the resulting

AMOC is totally misrepresented. TheAMOC lower cell

becomes much stronger, with the zero contour reaching

1000-m depth at ;208N. This leads to a much shallower

NADW and a broader AABW in CDA0 compared with

that in either the CESM simulation or the original CM2.1

simulation, as shown in Fig. 4. The seasonal cycle and

variability are also degraded compared with the CM2.1

model control (Figs. 4b,c).

To understand the reasons for AMOC misrepresenta-

tion in CDA0, in Fig. 8 we examine the time-varying

relative RMSE normalized by the RMSE of CM2.1 CTL

(RMSECDA/RMSECTL) of ocean temperature, salinity,

and density in depth–time space in Atlantic. Due to uti-

lization of the adaptive inflation ensemble filter (AIEF)

scheme (Zhang et al. 2010), the assimilation of Argo data

in CDA0 leads to an improvement in ocean tempera-

ture and salinity down to 2500-m depth (i.e., RMSECDA/

RMSECTL, 1). The improvement of ocean temperature

is much greater than that of salinity (the relative RMSE

of temperature is smaller than that of salinity). However,

while the ocean temperature and salinity show clear im-

provement in the upper 2500m, the density is improved

only in the upper 600m. At deeper levels, density gets

even worse (RMSECDA/RMSECTL . 1). It seems that,

due to themodel bias of CM2.1 with respect to CESM1.3,

whenonly the upper ocean is constrainedby the ‘‘observed’’

data, the biased model develops incoherent ocean stratifi-

cation (too-light water between 500 and 3000m in the

Atlantic; dashed cyan line in Fig. 9b). The instability

associated with such erroneous stratification of the

ocean column causes the AABW cell to strengthen and

expand, leading to misrepresentation of the AMOC.

Next, we will examine further experiments designed

to enhance the coherence of ocean stratification so as to

improve the AMOC structure.

4. Importance of coherent ocean stratification for
AMOC reconstruction

a. Mean state

Considering that observations below 2000m are very

sparse and internal variability in the deep ocean is weak,

we employ global climatological restoring of tempera-

ture and salinity (e.g., Levitus et al. 2001, 2005, 2012) in

 
(solid purple line, CDAwith Restoring2), Restoring3 (dashed red line, with T and S restoring in all ocean

layers but lighter restoring above and stronger restoring below 1500m relative to Restoring2), and CDA3

(solid red line, CDAwith Restoring3). See Table 1 for detailed descriptions of all experiments. Note that

to save computational resources, CDA0 and CDA1 are only run for the first 10 years.
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the deep ocean to relax the distorted ocean stratification

(caused by strong data constraint in upper ocean, shown

in Figs. 8c, 9a, and 9b) with an inconsistent ocean ver-

tical structure causing instability. We first construct the

climatology using ocean temperature and salinity from

the CESM ‘‘truth’’ simulation. Then we restore the

CM2.1 toward this climatology for 3 years with the

restoring scheme depicted by the green line in Fig. 10

(called ‘‘Restoring1’’ in Table 1). The Restoring1 scheme

nudges CM2.1 toward the ‘‘truth’’ climatology of tem-

perature and salinity data starting from 1000m ramping

to a 180-day (0.64 3 1027 s21) restoring time scale at

1500m, and eventually extends to a 60-day (1.93 3
1027 s21) time scale at the bottom. For optimal utilization

FIG. 6. Time series of (a),(c),(e) the horizontally averaged relative root-mean-square errors (RMSECDA0/

RMSECTL) with the assimilation days and (b),(d),(f) the global root-mean-square errors (RMSEs) with the as-

similation years of (a),(b) air temperature (K), (c),(d) zonal windU (m s21), and (e),(f) meridional wind V (m s21)

of CDA0. In (a), (c), and (e), the time frequency is 6 h to show the process of RMSE reduction in CDA0 from the

CTL. In (b), (d), and (f), the green (black) line is the CDA0 (CTL) against the ‘‘TRUTH’’ (CESM1.3).
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of computational resource, we start the CDA experiment

(called CDA1) after the model gets sufficient restoring

spinup. Here, the CDA1 is initialized from the coupled

model states at the end of the 3-yr restoring spinup (i.e., at

0000 UTC 1 January 1981) and is then run forward with

the Restoring1 scheme.

The RMSEs of ocean temperature and salinity from

Restoring1 and the follow-up CDA1 are plotted in Fig. 5

as dashed (Restoring1) and solid (CDA1) lines. Based on

Restoring1, CDA1 further reduced the errors of ocean

temperature and salinity, especially for the deep ocean

below 2000m. Furthermore, from the time-varying rel-

ative RMSE (i.e., RMSECDA1/RMSECTL) of density in

CDA1 (see Fig. 11a), we see that the CDA1 improves the

density structure below 600-m depth compared to CDA0

(cf. Figs. 11a and 8c), with a maximal reduction in the

FIG. 7. (a) The CDA0 AMOC mean state (1981–87) and (b) the climatology and (c) the anomaly time series (six-point smoothing) of

AMOC indices produced by CM2.1 CDA0 (red) and CTL (blue) as well as the CESM ‘‘TRUTH’’ run (black). The two numbers in

parentheses in the legend in (b) are the annual mean value and climatological variance, respectively, and the two numbers in parentheses

in the legend in (c) are the anomaly variance and correlation coefficient with the ‘‘truth,’’ respectively.

FIG. 8. The distribution of the relative RMSE (RMSECDA/RMSECTL) of the Atlantic Ocean (a) temperature, (b) salinity, and

(c) density in depth–time space produced by CDA0. The areas with the values of RMSECDA/RMSECTL , 1 (. 1) indicate improvement

(degradation) by the assimilation. For visualization, above (below) 1000m the vertical interval is 100 (500) m.
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density error reaching 50% below 1000m. With much

improved ocean stratification, the major distortion of

the AMOC mean state vanishes (cf. Figs. 12a and 7a).

Compared with CDA0, the AMOC structure in CDA1 is

much closer to the ‘‘truth’’ simulated by theCESMmodel

(cf. Figs. 12a and 4a), although large differences still

remain.

Using the Restoring1 scheme, in which restoring is

conducted below 1000m, we can see that the structure

of the CDA1-reconstructed AMOC mean state and

seasonal cycle as well as its variability, especially the

strength of the mean state, are more reasonable than

those in CDA0 (Figs. 12b,c), meaning that mitigation

of model bias could reduce the artifacts in the assimi-

lation variability (e.g., Dee 2005; Zhang et al. 2012).

However, the CDA1AMOC strength (annual mean value

of 16Sv) is still muchweaker than the ‘‘truth’’ (annualmean

value of 29 Sv), and indeed weaker than that in the

CM2.1 CTL (annual mean value of 18 Sv). This may be

because, between 200 and 1000m, the relative RMSEs

of CDA1 for density remain large (Fig. 11a). In the

Restoring2 experiment, we extend the climatology re-

storing time scale of 180 days at 1500m to the surface

(dashed blue line in Fig. 10; Table 1). This experiment is

run for 3 years starting from 0000 UTC 1 January 1978

and then used to initialize a CDA experiment, CDA2.

With the addition of Restoring2, CDA2 improves the

density structure between 200 and 1000m from CDA1

(cf. Fig. 11b with Fig. 11a). The resulting AMOC mean

state and seasonal cycle, as well as its variability, are

plotted in Fig. 13. As a result of restoring to climatology

above 1000m, theAMOCmean state of CDA2 becomes

much stronger, with the annual mean value increasing

to 23 Sv.

b. Variability

From the above analyses of the results of the three

CDA experiments, it is clear that we can use climato-

logical restoring of ocean temperature and salinity to

improve the estimates of AMOC mean state and sea-

sonal cycle. However, based on a comparison of Fig. 13c

with Fig. 12c, we find that while the climatology restor-

ing at upper oceans enhances the AMOC strength, it

tends to damp AMOC variability. Meanwhile, Fig. 11b

indicates that with Restoring2 the density errors in the

deep ocean below 1000m remain large and increase with

depth. These results suggest that the upper-ocean cli-

matology restoring may be too strong so that variability

is damped too much, while the deep-ocean restoring is

too weak. To further increase the coherence of the

ocean stratification for sustaining AMOC variability, we

design a new restoring scheme, Restoring3 that basically

strengthens (weakens) the deep-ocean (upper-ocean)

FIG. 9. Profiles of density bias (time-averaged globalmean error) in (a) the global ocean and (b) theAtlanticOcean of

CTL (solid black), CDA0 (dashed cyan), CDA1 (dashed green), CDA2 (dashed blue), and CDA3 (solid red).

FIG. 10. Depth dependence of the restoring coefficients (s21)

used in the Restoring1 (green), Restoring2 (dashed blue), and

Restoring3 (red) schemes listed in Table 1.
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restoring. As shown by the red line of Fig. 10, the re-

storing time scales ramp from the surface to 1000m as 0

to 360 days, from 1000 to 1500m as 360 to 180 days, and

from 1500m to the bottom as 180 to 30 days. Following

the same approach as in CDA1 and CDA2, we conduct a

new experiment called CDA3. The relative RMSEs of

density in depth–time space are plotted in Fig. 11c, with

the AMOC mean state and seasonal cycle, as well as its

variability, shown in Fig. 14.

With the weaker relaxation (restoring) to the upper-ocean

climatology in CDA3, variability of the reconstructed

AMOC ismuch improved, with the correlation and variance

FIG. 11. As in Fig. 8c, but for (a) CDA1 (assimilating ocean temperature and salinity ‘‘observations’’ with the Restoring1 scheme),

(b) CDA2 (assimilating ocean temperature and salinity ‘‘observations’’ with the Restoring2 scheme), and (c) CDA3 (assimilating ocean

temperature and salinity ‘‘observations’’ with the Restoring3 scheme) (see Table 1).

FIG. 12. As in Fig. 7, but for CDA1. The variance and correlation coefficient between CTL or CDA1 and TRUTHAMOC anomalies are

calculated using the data from the last 7 years (1981–87).
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increasing up to 0.78 and 1.56 from 0.56 and 0.37 in

CDA2, respectively, which are also improved compared

to Restoring3 (0.67 and 1.28 as correlation and vari-

ance, respectively). These results suggest that in order

to have AMOCwell represented, it is very important to

have sound restoring to sustain the mean state of

AMOC working with instantaneous data assimilation

which retrieves ‘‘high’’-frequency AMOC variability. This

could have important implications for designing assimila-

tion systems for, e.g., decadal predictions.

5. Summary and discussion

Due to differentmodel biases, the reconstructedAMOCs

obtained by combining coupledmodels and observations in

different reanalyses products show highly divergent char-

acteristics (Karspeck et al. 2015; Jackson et al. 2019). In this

work, a biased twin experiment framework is designed to

study the influence ofmodel bias onAMOCreconstruction.

The biased twin experiments consist of two independent

coupled general circulation models (CGCMs), GFDL

CM2.1 and NCAR CESM1.3, and a coupled ensemble

filter with GFDL CM2.1. Based on the modern climate

observing system (Argo temperature and salinity profiles

as well as SST for the ocean, and reanalysis gridded data

of temperature and wind for the atmosphere), the at-

mosphere and ocean ‘‘observations’’ are drawn from a

CESM historical simulation that defines the ‘‘true’’ so-

lution of the CDA problem. Then, the synthetic obser-

vations are assimilated into the CM2.1 by the ensemble

FIG. 13. As in Fig. 7, but for CDA2. The statistics are based on the data of the last 10 years (1988–97).

FIG. 14. As in Fig. 13, but for CDA3.
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filter to recover the ‘‘truth.’’ The degree to which the true

AMOC state is recovered in different CDA schemes that

deal with the model bias differently provides insight into

the influence of model bias on AMOC reconstruction.

Our results show that while the traditional CDA sys-

tem effectively assimilates the atmosphere and upper-ocean

‘‘observations’’ into the coupled model and reduces upper-

ocean errors significantly, the reconstructed AMOC

becomes totally distorted in both the mean structure

and variability due to incoherent ocean density strati-

fication in our experiments. Given that most of ocean

observations are only available in the upper ocean

(above 2000m), it is necessary to enhance the coher-

ence of ocean vertical structure in ocean data assimi-

lation. Here we examine revised CDA schemes that

include climatological restoring of ocean temperature

and salinity to assess the AMOC analyses when the

ocean vertical structure is improved. In general, restoring

to climatology can greatly reduce the ocean model bias

and improve the coherence of ocean vertical structure,

thus improving estimates of the AMOC mean state.

However, excessively strong restoring in the upper ocean

can degrade the reconstruction of AMOC variability. A

sound CDA scheme that has a balance between the cli-

matological restoring and the instantaneous data con-

straints gives the most accurate reconstruction of AMOC

structure and variability. Given the relatively indepen-

dent nature of the CESM versus CM2 models, the main

conclusion gained in this study may have implication for

other CMIP5 models, although we use the CESM as the

‘‘truth’’ model that produces the ‘‘observations.’’

Reconstructing the historical mean structure and vari-

ability of AMOC based on observational information is

an important step in understanding the large-scale vari-

ability of the global climate (e.g., Delworth and Dixon

2000, 2006; Zhang et al. 2009, 2010). This study serves as

a guide for combining the Earth observing system with

a CGCM to reconstruct twentieth-century AMOC. Our

results suggest that for a given CGCM, with its own bias

characteristics, an appropriate climatological restoring

scheme in the oceanmodelworkingwith theCDAsystem

is of critical importance. However, due to the rich spec-

trumofAMOCvariability associatedwith various complex

mechanisms, many other factors need to be considered in

order to generate accurate and robust AMOC state esti-

mates using observations combined with models. For ex-

ample, how do high-frequency air–sea interactions in the

tropical Atlantic impact AMOC structure and variability?

Given the close relation between sea ice andAMOC, what

is the impact of sea ice observational constraints on the

AMOC reconstruction? Another obvious follow-up would

be to apply the setup of this study to the twentieth-century

observing system to learn what could be expected as the

first step that attempts to produce an historical AMOC

reconstruction. Given that deep Argo deployment has be-

gun (https://www.climate.gov/news-features/climate-

tech/deep-argo-diving-answers-ocean%E2%80%99s-abyss),

in the future with improved model parameterizations (for

key strait overflows, for instance), accurately estimating and

predicting the AMOC state to some degree is feasible.
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